2013年度日本政府(文部科学省)奨学金留学生選考試験

QUALIFYING EXAMINATION FOR APPLICANTS FOR JAPANESE GOVERNMENT (MONBUKAGAKUSHO) SCHOLARSHIPS 2013

学科試験 問題

EXAMINATION QUESTIONS

(専修学校留学生)

SPECIAL TRAINING COLLEGE STUDENTS

数 学

MATHEMATICS

注意☆試験時間は60分。

PLEASE NOTE : THE TEST PERIOD IS 6 0 MINUTES.

Note that all the answers should be written on the answer sheet.

- 1. Fill in the following blanks with the correct answers.
- (1) $2a^2b^3 \times (-3ab^2)^2 \div (-6a^3b^5) =$
- (2) The range of x that satisfies the following inequality |x-1| < 3; \bigcirc $< x < \bigcirc$ \bigcirc .
- (3) When $x^2 3x + 1 = 0$, then $x + \frac{1}{x} = \boxed{\bigcirc}$, $x^2 + \frac{1}{x^2} = \boxed{\bigcirc}$.
- (4) There are ten cards numbered from 1 to 10. Take out three cards from them.
 - i) The probability that the product of the numbers of the three cards is an odd number is $\frac{1}{\boxed{\bigcirc}}$.
 - ii) The probability that the sum of the numbers of the three cards is an even number is $\frac{1}{\boxed{2}}$.
- (5) Take a triangle ABC, where $\overrightarrow{AB} = (x, 2, 1)$, $\overrightarrow{BC} = (-1, y, 4)$ and $\overrightarrow{CA} = (3, -5, z)$. Then $x = \boxed{\textcircled{1}}$, $y = \boxed{\textcircled{2}}$ and $z = \boxed{\textcircled{3}}$ and the scalar product of two vectors $\overrightarrow{AB} \cdot \overrightarrow{AC} = \boxed{\textcircled{4}}$.
- (6) The graph of $y = \log_2(8x 16)$ corresponds to a graph shown by shifting the graph of $y = \log_2 x$ by ① on the x-axis and by ② on the y-axis.
- (7) 2, \bigcirc , \bigcirc , \bigcirc , \bigcirc , \bigcirc is an arithmetic progression. \bigcirc 3 , \bigcirc , \bigcirc 6, \bigcirc 4 , \bigcirc 54, \bigcirc is a geometric progression.

- (8) If $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{6}{7}$, then $n = \boxed{ }$
- 2. On the plane xy, there are a parabola $y = x^2 + x 2 \cdots @$ and a straight line $y = 3x + a \cdots @$.

When a and b have common points, then $a \ge \boxed{\textcircled{3}}$.

- Find the integer that is the closest to the result of the calculation, and fill the blanks with a number shown below.
- (1) $\frac{1}{3} \left(\frac{1}{5} \frac{7}{2}\right) = \boxed{ }$
- (2) $\left(\sqrt{5} \sqrt{2}\right)^2 =$
- (3) $\sin 30^{\circ} + \cos 45^{\circ} + \tan 60^{\circ} =$
- (4) $\frac{2}{3} + \left(\frac{2}{3}\right)^2 + \left(\frac{2}{3}\right)^3 + \left(\frac{2}{3}\right)^4 + \left(\frac{2}{3}\right)^5 = \boxed{ }$
- (5) $\int_{0}^{2} (x^{2} + 3x 1) dx = \boxed{ }$
 - ① 1 ② 2 ③ 3 ④ 4 ⑤ 5 ⑥ 6 ⑦ 7 ⑧ 8 ⑨ 9